752

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-31, NO. 9, SEPTEMBER 1983

Passbands and Stopbands for an Electromagnetic
Waveguide with a Periodically Varying
Cross Section

ANDERS BOSTROM

Abstract —Electromagnetic waves in a rotationally symmetric and per-
fectly conducting waveguide with a periodically varying cross section are
considered. Using the null field (7 matrix) approach, a rather complicated
determinantal condition for computing the axial wavenumber is derived.
For a waveguide where the radius varies sinusoidally with the axial coordi-
nate, the passbands and stopbands for the TE,;, TM,,, and TE,, modes
are numerically computed. When the axial wavenumbers of two modes
differ by a multiple of the wavenumber of the wall corrugations, the result
is a stopband in the following cases: for two TE modes propagating in
opposite directions, for a TE and a TM mode in the same direction, and
sometimes for two TM modes in opposite directions.

1. INTRODUCTION

N THE PRESENT PAPER, we consider the propaga-

tion of electromagnetic waves in a perfectly conducting
rotationally symmetric waveguide whose wall has periodic
corrugations that do not need to be small. This structure
finds applications as a mode converter, for instance, and it
has, therefore, been studied for small wall corrugations by
Asfar and Nayfeh [1] and Kheifets [2] (further references
can be found in these two papers). The main conclusion to
be drawn from the literature is the appearance of reso-
nances between two modes when the difference in wave-
number between the modes is equal to a multiple of the
wavenumber for the wall corrugations. The resonance can
be destructive, in which case it leads to a stopband. Some
similar investigations of periodic structures—with similar
results—include a rotationally symmetric acoustic duct [3],
[4], a rectangular waveguide [5], and a parallel-plate wave-
guide [6]. For a review of waves in periodic structures in
general, we refer to Elachi [7].
~ To perform our investigation, we employ the null field
(or T matrix) approach (see [8]-[13] for some relevant
applications). Especially useful for the present study is the
paper by Bostrdom [3] on acoustic waves in a cylindrical
duct with periodically varying cross section and the calcu-
lation by Bostrom and Olsson [13] of the transmission and
reflection by an obstacle inside a waveguide.

The main ideas of our approach are as follows.
The starting point is a surface integral representation with
the free-space Green’s function. The Green’s dyadic and
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the unknown surface field are then expanded in cylindrical
vector waves, and by using the periodicity of the waveguide
wall we obtain a determinantal condition for determining
the axial wavenumber for the waveguide modes. The pass-
bands and stopbands are then determined by whether this
wavenumber is real or not. Numerical results are given for
the modes corresponding to the TE,;, TM,,, and TE,,
modes in a straight waveguide.

II. DETERMINATION OF THE WAVEGUIDE MODES

Consider a cylindrical waveguide with a circular cross
section and a wall S that is periodic in the axial z-direction.
The equation of the wall is thus p = p(z), where p(z) is
periodic with period 2a. We assume time harmonic condi-
tions, and the factor exp(— iwt) is suppressed. We take the
medium in the waveguide to be homogeneous, isotropic,
and lossless, so the electric field E satisfies

VXVXE(r)-k*E(r)=0

1)

where the wavenumber & = w /c is real, ¢ being the velocity
of light. The waveguide wall is assumed to be perfectly
conducting, i.e., the boundary condition is

#'x E(r') =0,

(2)

where 7’ is the outward pointing unit normal on S. The
problem we are addressing is the determination of the
passbands and stopbands of the waveguide, or, phrased
differently, the determination of the propagating modes
(which are just the simplest type of solution of (1) and (2)).

To be systematic, we consider the field in the waveguide
generated by some source, a dipole, for instance, inside the
waveguide. Away from the source this field can then be
written as a sum over the waveguide modes (propagating
and nonpropagating). Thus solving this radiation problem
we will, on the way, obtain the equations that determine
the waveguide modes.

Our starting point is the following integral representa-
tion containing the free-space Green’s function [13]

ronsS

E(r)—k 2V XV fo(r, r)i X[ v X E(r)] ds’
S

_ {E(r), rinside S
0, r outside S
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where the boundary condition (2) has already been em-
ployed and where E’ is the given field from the source. The
free-space Green’s function is

G(r,.r’)‘ =eMr=r1 /(4q|r — 1)) (4)

and the expansion of the free-space Green’s dyadic is [13]

o ] N o
IG(r,r) = sz Rex (A r )xk(h;r.)dn+ 1,
k bl o}

(5)
where I is the unit dyadic and fm is an irrotational dyadic.
r.(r. ) denotes the radius vector with the smallest (great-
est) value of p or p’. The cylindrical vector basis functions
are here defined as

Xram (B3 7) = (€, /87)""

(k/q)(k~'wx)"
cosme

sy ihz

0@ Game) o] ©
where €,,=2—38,,, (8, is the Kronecker symbol), g = (k>
— h?)'/2, Imq = 0 (Im stands for the imaginary part), and
H® is the Hankel function of the first kind; 7 =1,2 (TE
and TM modes), o = e, 0 (determines azimuthal parity),
and m=0,1,2,.... The regular basis functions contain a
Bessel function J,, instead of HP. The index k in the
expansion (§) is a multi-index k = (tom) and the dagger
on X, (which can be moved to Rey ;) means that e**? in
(6) should be replaced by e ~*# (before taking the curl).

Outside the circumscribed cylinder to S the field from
the source can be expanded as

E()=X [ adh)x(hr)ydn/k (1)
k — 00

and inside the inscribed cylinder to S the scattered field
E*=E — E' can be expanded as

Es(,«)=2k:f:°fk(h)Rexk(h;r) dh/k. (8

Inserting the Green’s dyadic (5) into the integral represen-
tation (3) and equating coefficients with (7) and (8) in their
respective regions of validity yields

a,(h) = zkfRex (hyP)-#'x[v' X E(r)] dS’ (9)

fo(h)=— ikfsx‘;c(h; r)-A'x [ v/ x E(r)] dS’. (10)

To proceed we expand the surface field appearing in (9)
and (10) in some suitable system

A x [ v/ x E(r)] = § f_oowak,(h’)§k,(h'; v) di,
(11)

Several different expansion systems are possible; we could,
for instance, use the regular or outgoing basis functions.
The simplest choice is probably to use the surface basis
functions (analogous to using the spherical harmonics-on a

r onS.

!
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closed surface)

1o COSMPY
(i) (e’"/87r)/(sinm<p)eh(p’ r=1
;r)=
* (¢, /87)" cosme e’*7h x T=2.
m sinm(p ¢, )

(12)

Note that this system is only useful on a rotationally
symmetric waveguide wall where <p is tangent to the surface.
Another useful choice is

(13)

In the present case the expansion in (11) is then only valid
strictly on the surface. However, if we had expanded only
the scattered field on the surface in the system in (13), that
expansion would in fact represent the scattered field in the
whole waveguide, cf. Millar [14].

Introducing (11) into (9) and (10) gives

§e(hsr) =k A x[v X Rex,(h;r)].

a (1) =i% [ ReQuu(h, W) (W) di' /K (14)
k'Y —o0

fel(m)==i% [~ Que(h, e (W) b’ /K (15)
k¥ —oo
where
Qu (h W) = 2 [ XL (ks ) (W ) dS” (16)

and ReQ,,. contains Rex} instead of x}. Eliminating
a,.(h’) between (14) and (15) and inserting the result for
fr(h) into (8), we have thereby formally solved the radia-
tion problem. To obtain the solution as a sum over the
waveguide modes the integral in (8) must be closed (which
is only possible away from the source). The poles of f,(h)
will then determine the wavenumbers of the waveguide
modes. A remaining branch line integral is expected to be
cancelled by the direct field from the source, cf. the case
treated by Bostrom and Olsson [13].

To obtain a more concrete characterization of the wave-
guide modes, we now use the rotational symmetry and the
periodicity of the waveguide to perform the @ integration
and reduce the z integration to one period in the surface
integral in (16). The ¢ integration gives a decoupling into
even (76 =10,2¢) and odd (70 =1e,20) modes, and as
these two kinds of modes have the same propagation
characteristics we from now on only consider the even
modes (we can then omit the o index altogether as it is
given implicitly by 7). The result after integrating (16) is
then

Q-rm,'r'm’(h’ h,) = 6mm’(”'rkz/a);a(hl_

F'rm(h;p(z)’z).G-rm'

a
<J
—a

h—ln/a)

(75 0(2),2)p(2) dz/n,
(17)
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where [ is summed over all integers and n, is the p
component of A. F,, and G,,, are X!  and §Tm, respec-

tively, with the ¢ dependence left out
cosm
()
sin mo
is replaced by (1). We now introduce (17) into (14) and

(15), change & — h + nw/a, put n’=n + [, and sum over n’
instead of over /, to finally obtain :

ai(h) =i L Re Q.. (h) el (h)

T'n’

5 (0) = =1 O ()5} (1)

(18)
(19)

where

(m)

Q47 (h) = (k/a) [ E(h+ n/fa: p(2).2)

GT,m(h+n’7r/a;p(z),z)p(z)dz/n (20)
and a(h)=a,,(h+nn/a) and similarly for al{™(h)
and £™(h). As "discussed above, the poles of £, (h) de-
termine the propagation constants of the waveguide modes,
and as Q{7 .(h) has no poles (a fact which is evident

from (20)), the poles must occur at those values of # where
ReQ{™, .(h) is a singular matrix, i.e.,

detRe Q. (k) =0. (21)

Thus this is the condition that determines the axial wave-
numbers # of the waveguide modes (propagating or non-
propagating). The passbands and stopbands for a particu-
lar mode are then given by whether the corresponding 4 is
real or not.

The value of the axial wavenumber % is not unique;
h+ nw/a, for any integer n, is evidently a solution if 4 is
one. But if we demand that the value of 4 varies continu-
ously as we deform from a straight waveguide to the
periodic waveguide at hand, then 4 is unambiguously de-
termined. It should be stressed, however, that it is perhaps
a little misleading (but convenient) to call # “the axial
wavenumber,” as there really is no well-defined wavenum-
ber or phase velocity in the axial direction.

If it should happen that the axial wavenumbers of two
modes (which may propagate in different directions) differ
by a multiple of 7/a (which is the wavenumber of the wall
corrugations), then we should expect that some sort of
resonance occurs. That this is indeed so has been shown by
Asfar and Nayfeh [1] for small wall perturbations, and will
be further illuminated in the next section. It seems that
more often than not the resonance leads to a stopband.

III. NuUMERICAL RESULTS AND DISCUSSION

We now turn to a numerical investigation of the pass-
bands and stopbands for a waveguide whose radius varies
sinusoidally along the axial distance

p(z)=a+dcosmz/a

where the axial period has been chosen equal to the mean
diameter. We have investigated the case m =1 and the
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Fig. 1. The passbands and stopbands (shaded) for the TE;; mode.
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Fig. 2. The passbands and stopbands (shaded) for the TM;, mode.

frequency range ka < 6. This value of m has been chosen
because the fundamental mode (the mode with the lowest
cutoff) has m =1, and also because the case m =0 is less
interesting in that the TE and TM modes do not couple in
that case. For ka < 6 up to three modes are propagating, in
conventional notation these are the TE,; (the fundamental
mode), TM,;, and TE, modes. We retain these names for
the modes also when the waveguide has a periodic cross
section and the modes no longer are transverse electric or
magnetic.

When determining the passbands and stopbands numeri-
cally following the prescriptions of the previous section, we
have usually employed the surface basis functions defined
in (12). The regular basis functions, used according to (13),
have only been employed as a check. At least for d /a < 0.2,
the two alternatives give indistinguishable results, but when
d/a is increased the regular basis functions become in-
creasingly more difficult to use (cf. also the comments in
the paper by Bostrom [3]). As a further check, we mention
that the observation in the paper by Asfar and Nayfeh [1]
that a wall perturbation decreases the wavenumbers of all
TM modes not in resonance, is confirmed by our computa-
tions (no further comparisons with the work by Asfar and
Nayfeh [1] are possible at present, because we have not
considered two TM modes propagating in the same direc-
tion).

The passbands and stopbands of the TE,;, TM;;, and
TE,, modes are shown in Figs. 1, 2, and 3, respectively.
The frequency range is from cutoff to the last stopband for
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Fig. 3. The passbands and stopbands (shaded) for the TE,, mode.

TABLE 1
THE CUTOFF AND RESONANCE FREQUENCIES, THE RESONATING
MODES, AND THE TYPE OF THE RESONANCE FOR THE TE;;, TM;;,
AND TE;, MODES IN THE FREQUENCY INTERVAL ka < 6 FOR A
‘WAVEGUIDE WITH THE PERIOD OF THE WALL CORRUGATIONS
EQUAL TO THE DIAMETER

frequency ka modes directions type
1.841 TE11 - - cutoff
2.420 ’I‘E11 TE11 opposite stopband
, 3.641 ’I‘E11 TE11 opposite stopbandy
3.832 TM11 - - cutoff
3.838 TE11 TM11 same stopband
4.14 T, TM11 opposite stopband
4.440 TE11 TM11 opposite passband
4,955 TM11 TM11 opposite passband
5.059 TE11 TE11 opposite stopband
5.331 TE12 - - cutoff
5.367 TM11 TE12 same stopband
5.454 TE11 TE12 opposite stopband
5.558 TE12 TE12 opposite stopband
5.622 TE11 ™, opposite passband
5.711 'I‘M11 TE12 opposite passband
5.852 ’I‘E11 TE12 same passband

ka <6, and the height of the corrugations are 0 <d/a <
0.4. Together with the cutoffs, the resonances are also
listed in Table 1, which gives the resonance frequency, the
resonating modes, the relative directions of the resonating

modes, and the type of the resonance (stopband or pass-

band). Our results may be summarized as follows: TE
modes in opposite directions lead to a stopband and in the
same direction they lead to a passband (in this respect TE
modes behave as acoustic modes in a hard-walled wave-
guide [3]), a TE and a TM mode in opposite directions lead
to a passband and in the same direction to a stopband, and
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TM modes in opposite directions can lead to either a
passband or a stopband (we have not considered two TM
modes in the same direction, but according to the paper by |
Asfar and Nayfeh [1] they should lead to a passband).
These results are possibly true in general, although it
should be noted that the only proved results are those
listed in Table I. The passband at ka = 4.955, for the two
TM,,; modes propagating in different directions, is surpris-
ing—a stopband at this frequency and our results would
be much more systematic and symmetrical. We have, how-
ever, made a thorough search (stepping in ke with steps of
length 0.001 at several values of d /a), so it seems improba-
ble that we should have missed a very narrow stopband.

The resonance between the TE,, and TM,;; modes at
ka = 4.440 is marked with a dashed line in Figs. 1 and 2.
The boundaries between the stopbands and passbands are
seen to jump at the resonance. The reason for this is that
the two modes “cross over” at the resonance, i.e., what is
the TM,; mode below ka = 4.440 becomes, upon continu-
ous changes in ka with d /a fixed, the TE;; mode above. It
should also be noted that around the resonance it is really
meaningless to distinguish between the TE,; and TM;
modes, as the two resonance modes are a mixture of TE,;
and TM,; (even for small d/a). The resonance at ka =
4.955 between the two TM,; modes in opposite directions
also leads to a cross over, but it does not lead to a jump in
the boundaries between the stopbands and passbands since
the two modes have identical properties. The three reso-
nances in the interval 5.6 < ka <5.9 are not included in
Figs. 1-3 because we have not completely mapped the
rather complex behavior of the three modes in this interval.

At d/a = 0.4, which is the highest value of d /a shown in
the figures, there still exist some passbands. As in the
acoustic case, cf. the paper by Bostrom [3], it is tempting to
assume that some passbands may exist for all d/a up to
d/a =1, where they would go over into the sharp reso-
nance frequencies of the resulting “onion-shaped” bounded
volume.

REFERENCES

[1] O.R. Asfar and A. H. Nayfeh. “Circular waveguide with sinusoid-
ally perturbed wall,” IEEE Trans. Microwave Theory Tech., vol.
MTT-23, pp. 728-734, 1975.

[2] S. A. Kheifets, “Electromagnetic fields in an axial symmetric wave-
guide with variable cross section,” IEEE Trans. Microwave Theory
Tech., vol. MTT-29, pp. 222-229, 1981.

[31 A. Bostrom, “Acoustic waves in a cylindrical duct with periodically
varying cross section,” Wave Motion, vol. 5, pp. 5967, 1983.

[4] A. H. Nayfeh and O. R. Kandil, “Propagation of waves in cylindri-
cal hard-walled ducts with generally weak undulations,” AIAA4 J.,
vol. 16, pp. 1041-1045, 1978.

{5] A. K. Mallick and G. S. Sanyal, “Electromagnetic wave propaga-
tion in a rectangular waveguide with sinusoidally varying width,”
IEEE Trans. Microwave Theory Tech., vol. MTT-26, pp. 243-249,
1978.

{6] O.R. Asfar and A. H. Nayfeh, “Stopbands of the first-order Bragg
interaction in a parallel-plate waveguide having multiperiodic wall
corrugations,” IEEE Trans. Microwave Theory Tech., vol. MTT-28,
pp. 1187-1191, 1980.

[71 C. Elachi, “Waves in active and passive periodic structures: A
review,” Proc. IEEE, vol. 64, pp. 1666-1698, 1976.

[8] P. C. Waterman, “Symmetry, unitarity, and geometry in electro-
magnetic scattering,” Phys. Rev., vol. D3, pp. 825-839, 1971.

[9] , “Scattering by periodic surfaces,” J. Acoust. Soc. Amer.,



756

vol. 57, pp. 791-802, 1975. ’

S. L. Chuang and J. A Kong, “Wave scattering from periodic rough
surfaces,” Proc. IEEE, vol. 69, pp. 1132-1144, 1981.

A, Bostrom, “Surface waves on the periodic boundary of an elastic
half space,” Appl. Sci. Res., vol. 39, pp. 129-142, 1982.

F. L. Ng and R. H. T. Bates, “Null field method for waveguides of
arbitrary cross section,” IEEE Trans. Microwave Theory Tech., vol.
MTT-20;, pp. 658662, 1972.

A. Bostrom and P. Olsson, “ Transmission and reflection of electro-
magnetic waves by an obstacle inside a waveguide,” J. Appl. Phys.,
vol. 52, pp. 1187~1196, 1981,

R. F. Millar, “The Rayleigh hypothesis and a related least-squares
solution to scattering problems for periodic surfaces and other
scatterers,” Radio Sci., vol. 8, pp. 785-796, 1973, -

(10]
(11]
[12]

f13]

[14]

Microwave Automatic

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-31, NO. 9, SEPTEMBER 1983

Anders Bostrom was born in Stockholm, Sweden,
on -November 2, 1951." He received the M.Sc.
degree in engineering physics from Chalmers
University of Technology, Goteborg, Sweden, in
1975, and the Ph.D. degree in mathematical
physics from Chalmers University of Technol-
ogy, Goteborg, Sweden, in 1980.

From 1980 until the present, he has been a
Research Associate at the Institute of Theoretical
Physics, Chalmers University of Technology. His
main research interests are wave propagation and
scattering of both electromagnetic and elastic waves, including such topics
as multiple scattering, periodic structures; waveguides, and pulse scatter-
ing, : =

Impedance Measuring

Schemes Using T

hree Fixed Probes

CHIA-LUN J. HU

Abstract —Following a previous article reporting a general theory and a
new approach using multiple probes to measure the complex impedance of
an unknown microwave load, this article describes a simplified, but im-
proved, design derived from that general theory. A simple analog dc signal
processor was built according to this design and preliminary experiments
were camried out to check the performance of the systein. Real time
oscilloscope displays showing the complex reflection coefficients of some
standard loads and some time-varying loads were recorded. The perfor-
mance of this system was checked against that of the standard traveling
probe technique. The maximum disagreeinent between the two methods is
about 5 percent in amplitude and 7° in phase.” A special dc signal
processor—the display rotator—was used in the system. The purpose, the
design, and the performance of this rotator circuit are discussed in detail.
Although the present experiments are restricted to fixed-frequency-auto-
matic measurements, the system is seen to be easily generalized to
step-frequency measurements as well. The latter can be used to record
automatically the complex impedance spectrum of an unknown microwave
load when the frequency is changed. Component imperfections that may
affect the system accuracy and comparison of the present system with othér
automatic measuring systems are discussed.

I. INTRODUCTION

ULTIPLE—FIXED probes' mounted on a waveguide
or a transmission line have been used by many
investigators to measure the complex impedance Z of an

unknown microwave load. A previous article published in

Manuscript received February 23, 1982; revised April 5, 1983. This
work was supported by a grant from the National Science Foundation.

The author is with the Department of Electrical Sciences and Systems
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this TRANSACTIONS [1] has summarized some of the back-
‘ground work in the field. Also in the article quoted, a novel -
approach that clarifies certain design confusions and that
allows new designs to be reached was reported in detail.
Following this new approach, static measurements (mea-
surements of the outputs of the three probes with hand
calculation to predict the unknown Z at différent frequen-
cies) and discussions of possible effects of system perfor-
mance due to component imperfections were reported in
several papers [2]-[4]. These static measurements verify, to
a certain degree of accuracy, the theory reported in the
quoted article. The theory is also verified by other investi-
gators using digital means [5].

In the present article, the reader will see a 51mp11fled but
improved, design. Based on this new design, a dc electronic
signal processor was built and tested. The detail of the
design, the calibration, and the experimental result of this
new approach will be discussed in order, following a brief
review of the fundamental theory. :

IL.

As reported in the quoted article [1], three fixed probes
‘mounted on a lossless waveguide or a transmission line
terminated by an unknown impedance Z; (Fig. 1) can be
used to measure automatically the phase and the rnagni-
tude of the complex Z, at any fixed microwave frequency.
The conditions that this measurement is made possible are

THEORY
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