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Passbands and Stopbands for an Electromagnetic
Waveguide with a Periodically Varying

Cross Section

ANDERS BOSTROM

Abstract — Electromagnetic waves in a rotationally symmetric and per-

fectly conducting wavegnide with a periodically varying cross section are

considered. Using the null field (T matrix) approach, a rather complicated

determinantal condition for computing the axial wavenumber is derived.

For a wavegoide where the radins varies sinusoidally with the axial coordi-

nate, the passbands and stopbands for the TIC II, TM,1, and TE,2 modes

are numerically computed. When the axiaf wavenmnbers of two modes

differ by a multiple of the wavenumber of the wall corrugations, the result

is a stopband in the following cases for two TE modes propagating in

opposite rfkections, for a TE and a TM mode in the same direction, and

sometimes for two TM modes in opposite dkections.

1. INTRODUCTION

I N THE PRESENT PAPER, we consider the propaga-

tion of electromagnetic waves in a perfectly conducting

rotationally symmetric waveguide whose wall has periodic

corrugations that do ,not need to be small. This structure

finds applications as a mode converter, for instance, and it

has, therefore, been studied for small wall corrugations by

Asfar and Nayfeh [1] and Kheifets [2] (further references

can be found in these two papers). The main conclusion to

be drawn from the literature is the appearance of reso-

nances between two modes when the difference in wave-

number between the modes is equal to a multiple of the

wavenumber for the wall corrugations. The resonance can

be destructive, in which case it leads to a stopband. Some

similar investigations of periodic structures— with similar

results—include a rotationally symmetric acoustic duct [3],

[4], a rectangular waveguide [5], and a parallel-plate wave-

guide [6]. For a review of waves in periodic structures in

general, we refer to Elachi [7].
To perform our investigation, we employ the null field

(or T matrix) approach (see [8]-[13] for some relevant

applications). Especially useful for the present study is the

paper by Bostrom [3] on acoustic waves in a cylindrical

duct with periodically varying cross section and the calcu-
lation by Bostrom and Olsson [13] of the transmission and

reflection by an obstacle inside a waveguide.

The main ideas of our approach are as follows.

The starting point is a surface integral representation with

the free-space Green’s function. The Green’s dyadic and
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the unknown surface field are then expanded in cylindrical

vector waves, and by using the periodicity of the waveguide

wall we obtain a determinantal condition for determining

the axial wavenumber for the waveguide modes. The pass-

bands and stopbands are then determined by whether this

wavenumber is real or not. Numerical results are given for

the modes corresponding to the TEII, TMII, and TEIZ

modes in a straight waveguide.

11. DETERMINATION OF THE WAVEGUIDE MODES

Consider a cylindrical waveguide with a circular cross

section and a wall S that is periodic in the axial z-direction.

The equation of the wall is thus p = p(z), where p(z) is

periodic with period 2a. We assume time harmonic condi-

tions, and the factor exp ( – i~t ) k suppressed. We take the

medium in the waveguide to be homogeneous, isotropic,

and lossless, so the electric field E’ satisfies

vXv XE(r)–k2E(r)=0 (1)

where the wavenumber k = cJ/c is real, c being the velocity

of light. The waveguide wall is assumed to be perfectly

conducting, i.e., the boundary condition is

fi’x E(r’) =0, r’ on S (2)

where i‘ is the outward pointing unit normal on S. The

problem we are addressing is the determination of the

passbands and stopbands of the waveguide, or, phrased

differently, the determination of the propagating modes

(which are just the simplest type of solution of (1) and (2)).

To be systematic, we consider the field in the waveguide

generated by some source, a dipole, for instance, inside the

waveguide. Away from the source this field can then be

written as a sum over the waveguide modes (propagating

and nonpropagating). Thus solving this radiation problem

we will, on the way, obtain the equations that determine

the waveguide modes.

Our starting point is the following integral representa-

tion containing the free-space Green’s function [13]

E’(r) –k-2vxvx ~G(r,r’)fi’X[v’ XE(r’)] dS’
s

{

_ E(r), r inside S— (3)
o, r outside S
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where the boundary condition (2) has already been em-

ployed and where Ei is the given field from the source. The

free-space Green’s function is

G(r, r’)= ei~l”-r’l/(4rlr – r’1) (4)

and the expansion” of the free-space Green’s dyadic is [13]

~G(r,r’)=i~~m Re~k(h; r<)x~(h; r>)dh+~ti,
k —co

(5)

where ~is the unit dyadic and In is an irrotational dyadic.

r< ( r. ) denotes the radius vector with the smallest (great-

est) value of p or p’. The cylindrical vector basis functions

are here defined as

XTO~(h; r)=(c~/8#2(k/q) (k-’vx)’

“[2H~)@’G%)eih’l‘6)
where cm = 2 – 8mo (dml is the Kronecker symbol), q = (k2

– h2)1/2, Im q >0 (Im stands for the imaginary part), and

H(l) is the Hankel function of the first kind; ~ =1,2 (TE

an~d TM modes), o = e, o (determines azimuthal parity),

and m = 0,1,2, . . . . The regular basis functions contain a

Bessel function J~ instead of H:). The index k in the

expansion (5) is a multi-index k = ( mrm ) and the dagger

on Xk (which can be moved to Re x~ ) means that eikz in

(6) should be replaced by e - ‘k’ (before taking the curl).

Outside the circumscribed cylinder to S the field from

the source can be expanded as

Ei(r)=~~~ a~(h)X~(h; r)dh/k (7)
k –w

and inside the inscribed cylinder to S the scattered field

Es= E – Ei can be expanded as

ES(r) =~~@~k(h)ReXk(k; r)d~/k. (8)
k —w

Inserting the Green’s dyadic (5) into the integral represen-

tation (3) and equating coefficients with (7) and (8) in their

respective regions of validity yields

ak(h)=ik~Re X~(h; r’). fi’X[v’XE(r’)] dS’ (9)
s

/f,(h)= -ik ~xl(h; r’)”fi’X[V’XE(r’)] dS’. (10)

To proceed we expand the surface field appearing in (9)

and (10) in some suitable system

#X [V’X E(r’)] = ~~m ak,(h’){k,(h’; r’) dh’,
k’ ‘m

r’ on S. (11)

Several different expansion systems are possible; we could,

for instance, use the regular or outgoing basis functions.

The simplest choice is probably to use the surface basis

functions (analogous to using the spherical harmonics on a

closed surface)

[

()1,2 cos mq
(Cm/87r) sin mq ezh’@, 7=1

{,(h; r)=

()
(Em/87r)1/2 :::: eihzti X +, ~=z.’

(12)

Note that this system is only useful on a rotationally

symmetric waveguide wall where@ is tangent to the surface.

Another useful choice is

!ik(h; r)=k-’fl XI VXReX~(h; r)]. (13)

In the present case the expansion in (11) is then only valid

strictly on the surface. However, if we had expanded only

the scattered field on the surface in the system in (13), that

expansion would in fact represent the scattered field in the

whole waveguide~ cf. Millar [14].

Introducing (11) into (9) and (10) gives

a~(h) = i~ ~m ReQ~~,(h, h’)a~, (h’) dh’/k (14)
k’ ‘~

fk(h) = - i~~~ Qk,,(h, h’)a,,(h’) dh’/k (15)
k’ ‘m

where

~Qkk,(h, h’)= k2 ~X~(h; r’)”lk,(h’; r’) dS’ (16)

and Re Qkk, contains Re Xi instead of xl. Eliminating

ak,( h’) between (14) and (15) and inserting the result for

fk(h ) into (8), we have thereby formally solved the radia-

tion problem. To obtain the solution as a sum over the
waveguide modes the integral in (8) must be closed (which

is only possible away from the source). The poles of ~k( h )

will then determine the wavenumbers of the waveguide

modes. A remaining branch line integral is expected to be

cancelled by the direct field from the source, cf. the case

treated by Bostrom and Olsson [13].

To obtain a more concrete characterization of the wave-

guide modes, we now use the rotational symmetry and the

periodicity of the waveguide to perform the q integration

and reduce the z integration to one period in the surface

integral in (16). The rp integration gives a decoupling into

even (TO =10, 2e) and odd (m = le, 20) modes, and as

these two kinds of modes have the same propagation

characteristics we, from now on only consider the even

modes (we can then omit the u index altogether as it is

given implicitly by ~). The result after integrating (16) is

then

Q,~,,,~(h, h’)= 8~~,(~k2/a)~8(h’- h - l~/a)

x~a F&(h;~(z),z)%m:h’;p(z),z)p(z)dz/nP
—a

(17)
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where 1 is

component

tively, with

is replaced

summed over all integers and nP is the p

of $. F,m and G,~ are X~m and ~,~, respec-
the rp dependence left out

(-(::;;)

by (l). We now introduce (17) into (14) and

(15), change h ~ h + n~/a, put n’= n + 1, and sum over n’

instead of over 1, to finally obtain

a$:)(h) =i~Re Q~f~,,n, (h)a$~?(h) (18)
r’n’

fjfl)(h)= -ix Q$Y!,,.,(h)&~(h) (19)
‘T’n’

where

Q$:~,.(h)= (kn/a)~” FT~(h+nn/a; p(z), z)
—a

.GTn(h+ n’m/a;p (z), z)p(z)dz/nP (20)

and a$:)(h) = aT~(h + rim/a) and similarly for a~f)(h)

and f~~m)(h ). As discussed above, the poles of f,~(h ) de-

termine the propagation constants of the waveguide modes,

and as Q~;,\,H, (h) has no poles (a fact which is evident

from (20)), the poles must occur at those values of h where

Re Q~;},~, (h) is a singular matrix, i.e.,

det Re Q$:~,.(h) = O. (21)

Thus this is the condition that determines the axial wave-

numbers h of the waveguide modes (propagating or non-

propagating). The passbands and stopbands for a particu-

lar mode are then given by whether the corresponding h is

real or not.

The value of the axial wavenumber h k not unique;

h + rim/a, for any integer n, is evidently a solution if h is

one. But if we demand that the value of h varies continu-

ously as we deform from a straight waveguide to the

periodic waveguide at hand, then h is unambiguously de-

termined. It should be stressed, however, that it is perhaps

a little misleading (but convenient) to call h “the axial

wavenumber,” as there really is no well-defined wavenum-

ber or phase velocity in the axial direction.
If it should happen that the axial wavenumbers of two

modes (which may propagate in different directions) differ

by a multiple of ~/a (which is the wavenumber of the wall

corrugations), then we should expect that some sort of

resonance occurs. That this is indeed so has been shown by

Asfar and Nayfeh [1] for small wall perturbations, and will

be further illuminated in the next section. It seems that

more often than not the resonance leads to a stopband.

III. NUMERICAL RESULTS AND DISCUSSION

We now turn to a numerical investigation of the pass-

bands and stopbands for a waveguide whose radius varies

sinusoidally along the axial distance

p(z) =a+dcosmz/a

where the axial period has been chosen equal to the mean

diameter. We have investigated the case m =1 and the

pa
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Fig. 1. The passbands and stopbands (shaded) for the TE1l mode.
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Fig. 2. The passbands and stopbands (shaded) for the TM1l mode

frequency range ka <6. This value of m has been chosen

because the fundamental mode (the mode with the lowest

cutoff) has m =1, and also because the case m = O is less

interesting in that the TE and TM modes do not couple in

that case. For ka <6 up to three modes are propagating, in

conventional notation these are the TEII (the fundamental

mode), TMII, and TEIZ modes. We retain these names for

the modes also when the waveguide has a periodic cross

section and the modes no longer are transverse electric or

magnetic.

When determining the passbands and stopbands numeri-

cally following the prescriptions of the previous section, we

have usually employed the surface basis functions defined

in (12). The regular basis functions, used according to (13),

have only been employed as a check. At least for d/a< 0.2,

the two alternatives give indistinguishable results, but when

d/a k increased the regular basis functions become in-

creasingly more difficult to use (cf. also the comments in

the paper by Bostrom [3]). As a further check, we mention

that the observation in the paper by Asfar and Nayfeh [1]

that a wall perturbation decreases the wavenumbers of all

TM modes not in resonance, is confirmed by our computa-

tions (no further comparisons with the work by Asfar and

Nayfeh [1] are possible at present, because we have not

considered two TM modes propagating in the same direc-

tion).

The passbands and stopbands of the TEII, TMII, and

TEIZ modes are shown in Figs. 1, 2, and 3, respectively.

The frequency range is from cutoff to the last stopband for
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Fig. 3. The passbandsand stopbands(shaded)for the TE12mode.

TABLE I
lln? CUTOFF AND RESONANCE FREQUENCIES, THE RESONATING

MODES, AND THE TYPE OF THE RSSONANCE FOR THE TE1l, TM1l,
AND TE1 ~ MODES IN THE FREQUENCY INTERVAL ka <6 FOR A

WAVEGUIDE WITH THE PERIOD OF mm WALL CORRUGATIONS

EQUAL TO THE DIAMETER

frequency ka

1.841

2.420

\ 3.641

3.832

3.838

4.141

4.440

4.955

5.059

5.331

5.367

5.454

5.558

5.622

5.711

5.852

modes

‘El 1 -

‘%1 TE1 1

‘El 1 ‘El 1

‘“1 1 “

‘El 1 ‘Ml 1

‘Ml 1 ‘Ml 1

‘El 1 ‘Ml 1

‘Ml 1 ‘Ml 1

‘El 1 ‘El 1

‘E12 -

‘Ml 1 ‘El 2

‘El 1 ‘E12

‘El 2 %2

‘El 1 ‘Ml 1 I

Q

directions

OPPosite

OPPOsite

same

OPPOslte

OPPoslte

OPPosite

OPPosite

same

OPPOsite

OPPosite

oPPOslte

OPPOsite

same

type

cutoff

,topband

stopb.md

cutoff

stopband

stopband

passband

passband

,topband

cutoff

stopband

s topband

stopband

passband

pass band

passband

TM modes in opposite directions can lead to either a

passband or a stopband (we have not considered two TM

modes in the same direction, but according to the paper by

Asfar and Nayfeh [1] they should lead to a passband).

These results are possibly true in general, although it

should be noted that the only proved results are those

listed in Table I. The passband at ka = 4.955, for the two

TM1l modes propagating in different directions, is surpris-

ing—a stopband at this frequency and our results would

be much more systematic and symmetrical. We have, how-

ever, made a thorough search (stepping in ka with steps of

length 0.001 at several values of d/a), so it seems improba-

ble that we should have missed a very narrow stopband.

The resonance between the TE1l and TM1l modes at

ka = 4.440 is marked with a dashed line in Figs. 1 and 2.

The boundaries between the stopbands and passbands are

seen to jump at the resonance. The reason for this is that

the two modes “cross over” at the resonance, i.e., what is

the TM1l mode below ka = 4.440 becomes, upon continu-

ous changes in ka with d/a fixed, the TE1l mode above. It

should also be noted that around the resonance it is really

meaningless to distinguish between the TE1l and TM1l

modes, as the two resonance modes are a mixture of TE1l

and TM1l (even for small d/a). The resonance at ka =

4.955 between the two TM1l modes in opposite directions

also leads to a cross over, but it does not lead to a jump in

the boundaries between the stopbands and passbzuids since

the two modes have identical properties. The three reso-

nances in the interval 5.6< ka <5.9 are not included in

Figs. 1-3 because we have not completely mapped the

rather complex behavior of the three modes in this interval.

At d/a= 0.4, which is the highest value of d/a shown in

the figures, there still exist some passbands. As in the

acoustic case, cf. the paper by Bostrorn [3], it is tempting to

assume that some passbands may exist for all d/a up to

d/a =1, where they would go over into the sharp reso-

nance frequencies of the resulting “onion-shaped” bouoded

volume.
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modes behave as acoustic modes in a hard-walled wave-
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Microwave Automatic Impedance Measuring
Schemes Using Three Fixed Probes

CHIA-LUN J. HU

Abstract —Following a previous article reporting a generat thersry and a

new approach using multiple probes to measure the complex impedance of

an unknown microwave ioad, this article describes a simplified! but im-

prov~ design derived from that general theory. A simple analog dc signal

processor was built according to this design and preliminary experiments

were carried out to cheek the performance of the system. Real time

oscilloscope dkplays showing the complex reflection coefficients of some

standard loads and some time-varying loads were recorded. The perfor-

mance of this system was checked against that of the standard traveling

probe technique. The maximum disagreement hetweeu the two methods is

about 5 percent in amplitude and 7° in phase. A special dc signal

processor-the display rotator— was used in the system. The purpose, the

design, and the performance of this rotator circuit are rfiseussed in detail.

Although the present experiments are restricted to fixed-frequency-auto-

matic measurements, the system is seen to be easily generalized to

step-frequency measurements as well. me latter can be used 10 record

automatically the complex impedance spectrum of an unknowh microwave

load when the frequency is changed. Component imperfections that may

affect the system accuracy and comparison of the present system with other

automatic measuring systems are discussed.

I. INTRODUCTION

M ULTIPLE-FIXED probes mounted on a waveguide

or a transmission line have been used by many

investigators to measure the complex impedance ~; of an

unknown microwave load, A previous article published in

Manuscript received February 23, 1982; revised April 5, 1983. This

work was supported by a grant from the Nationaf Science Foundation.
The author is with the Department of Electncaf Sciences and Systems

Engineering, Southern Illinois University, Carbondale, IL 62901

this TRANSACTIONS [1] has summarized some of the back-

ground work in the field. Also in the article quoted, a novel “

approach that clarifies certain design confusions and that

allows new desi,gns to be reached was reported in detail.

Following’ this new approach, static measurements (mea-

surements of the outputs of the three probes with hand

calculation to predict the unknown ~ at different frequen-

cies) and discussions of possible effects of system perfor-

mance due to component imperfections were reported in

several papers [2,]–[4]. These static measurements verify, to

a certain degree of accuracy, the theory reported in the

quoted article. The theory is also verified by other investi-

gators using digital means [5].

In the present article, the reader will see a simplified, but

improved, design. Based on this new design, a dc electronic

signal processor was built and tested. The detail of the

design, the calibration, and the experimental result of this

new approach will be discussed in order, following a brief

review of the fundamental theory.

II. l%EORY

As reported-in the quoted article [1], three fixed probes

mounted on a l.ossless waveguide or a transmission line

terminated by an unknown impedance ~~ (Fig. 1) can be
used to’ measure automatically the phase and the magni-

tude of the complex ~~ at any fixed microwave freq~encY.

The conditions that this measurement is made possible are

0018-9480/83/0900-0756$01.00 01983 IEEE


